
LERN-APP: «3.2.5-8 ZERSPANUNG»

1438 Schnittgeschwindigkeit nach Schneide 1439 Schnittgeschwindigkeit nach Material 1440 Schnittgeschwindigkeit Spa 1441 Abkürzung v	Wie verändert sich die optimale Schnittgeschwindigkeit beim Einsatz härterer Schneiden ?	Wie verändert sich die optimale Schnittgeschwindigkeit beim Einsatz in weichen und harten Werkstoffen?	Wie hoch liegt die optimale Schnittgeschwindigkeit bei der Bearbeitung von Spanplatten mit HW -Werkzeugen?	Mit welcher Abkürzung und Einheit wird die Schnittgeschwindigkeit in Berechnungsformeln bezeichnet?
Harte Schneiden => höhere Schnittgeschwindigkeit. Bsp. bei Hartholz: HS 40-60 m/s HW 50-80 m/s DP 50-80 m/s Bigharter der Werkstoff, desto niedriger die Schnittgeschwindigkeit. Bsp. bei HW-Schneiden: Weichholz 60-80 m/s MDF 50-70 m/s Corian 20-60 m/s HPL 20-40 m/s V = 60-80 m/s V = 60-80 m/s V in m/s	Harte Schneiden => höhere Schnittgeschwindigkeit . Bsp. bei Hartholz: HS 40-60 m/s HW 50-80 m/s	Je härter der Werkstoff, desto niedriger die Schnittgeschwindigkeit. Bsp. bei HW-Schneiden: Weichholz 60-80 m/s MDF 50-70 m/s Corian 20-60 m/s		

Mit welcher Abkürzung und Einheit wird die Werkzeuggrösse von rotierenden Werkzeugen in Berechnungsformeln bezeichnet?	Mit welcher Abkürzung und Einheit wird die Drehzahl in Berechnungsformeln bezeichnet?	Mit welcher Abkürzung und Einheit wird die Vorschubgeschwindigkeit in Berechnungsformeln bezeichnet?	Für die Oberflächengüte spielt nebst der Länge der Hobelwelle (Schritt p) eine zweite Grösse eine wesentliche Rolle. Welche?
1442 Abkürzung d	1443 Abkürzung n	1444 Abkürzung v'	1445 Muldengrösse
Werkzeugdurchmesser d in m .	n in 1/min	v' in m/min	Die Tiefe der Hobelwelle (Muldengrösse). Je grösser das Werkzeug, desto kleiner die Mulde. Ein gleich langer Schritt ist bei geringerer Muldentiefe viel weniger sichtbar.

Mit welchen **Vorschubgeschwindigkeiten** wird bei der Holzbearbeitung gearbeitet?

Welchen **Werkzeugdurchmesser** sollte ein Fälzer für eine **Falztiefe** von 14mm idealerweise haben?

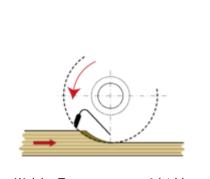
Bei Fräs- und Hobelarbeiten werden bezüglich **Schrittlänge** p drei **Qualitäten** unterschieden. Welche? Was geschieht bei zu **grossem/ zu kleinem Vorschub** und wie kann man
beim Fräsen erkennen, ob die
Vorschubgeschwindigkeit korrekt
eingestellt ist?

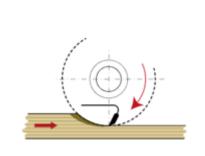
1446 | Vorschub

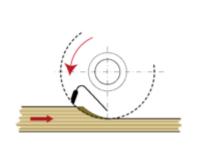
1447 || Falztiefe

1448 || Spangrösse

449 II Vorschubarösse


Handvorschub: 2-8 m/min.
Maschinenvorschub: Bis 30 m/min.
Industriell: Bis 100 m/min oder mehr.


Regel: **Verhältnis 1:10** - also 140mm Durchmesser beim 14 mm Falziefe. Wenn dieses Verhältnis unterschritten wird, steigt die Splitter-/ Ausrisswirkung markant an.


Feinschlichtspan 0.3 - 0.8mm. Schlichtspan 0.8 - 2.5mm. Schruppspan 2.5 - 5mm. v' zu gross: **Hackspäne**. v' zu klein: **Brandstellen/ Staub**. Das geübte Gehör erkennt dies am Zerspanungsgeräusch.

LERN-APP: «3.2.5-8 ZERSPANUNG»

Welche **Zerspanungsart** ist hier dargestellt?

Vorteile, Nachteile, Einsatzgebiet der **Gegenlaufspanung?**

Vorteile, Nachteile, Einsatzgebiet der Gleichlaufspanung?

Gegenlaufspanung

Gleichlaufspanung

V: Längere Standzeit (dank Vorspaltung), geringere Schneidenbelastung. **N**: Ausrissgefahr bei ungünstigem

Faserverlauf.

E: Bei manuellem Vorschub und abgesetzten Bearbeitungen nur Gegenlaufspanung zulässig.

V: Keine Ausrisse, schnelle Vorschübe möglich, geringe Vorschubskraft. **N**: Kürzere Standzeiten.

E: Nur bei mechanischem Vorschub

zulässig.

LERN-APP: «3.2.5-8 ZERSPANUNG»

Wie erkennt man bei Werkzeugen, ob sie für manuelle Vorschübe zugelassen sind?

Was definiert der Begriff ${f Standweg}$?

Der **Standweg** hängt von der Schneidenhärte und dem Material des Werkstücks ab. Welche zwei **weiteren Faktoren** sind auch noch wesentlich?

1454 II MAN MEC

1455 || Vorritzer

1456 || Standweg

157 II Finflüsse Standweg

MAN

MEC

Werkzeuge mit der Bezeichnung **MAN** sind für manuellen Vorschub zugelassen, mit **MEC** bezeichnete nur für meschanischen Vorschub.

Bei Kreissägen ist die untere Werkstückkante **ausrissgefährdet**. Durch den Einsatz von **Vorritzaggregaten** im **Gleichlauf** kann dies verhindert werden.

Die **Strecke**, die mit der Schneide geschnitten werden kann, bevor diese **nachgeschärft** werden muss. **Vibrationen** ergeben unregelmässigen Schneidenschlag und fördern Ausbrüche.

Verharzung der Schneiden führt zu schnellerer Abstumpfung und schlechterer Oberflächengüte.